US009405855B2

a2z United States Patent 10y Patent No.: US 9,405,855 B2
Vasilyeva et al. (45) Date of Patent: Aug. 2, 2016
(54) PROCESSING DIFF-QUERIES ON PROPERTY 7,315,855 B2* 1/2008 Carlson GOG6F 17/30483
GRAPHS 7,379,941 B2* 5/2008 Bostrom GO6N 5/006
8,380,738 B2* 2/2013 Tatemura GOGF 17/30557
707/760
(71) Applicants: Elena Vasilyeva, Dresden (DE); Maik 8.417,700 B2* 4/2013 GOGF 17/30616
Thiele, Dresden (DE); Christof 705/7.11
. 8,954,422 B2* 2/2015 Hasan ..o 707/723
Bornhoevd, Palo Alto, CA (US); 2011/0019245 Al* 52011 GOGF 17/30451
Wolfgang Lehner, Dresden (DE) 207/706
2011/0231418 Al* 9/2011 GOGF 17/30554
(72) Inventors: Elena Vasilyeva, Dresden (DE); Maik 707/756
Thiele, Dresden (DE); Christof 2012/0158791 Al* 6/2012 Kasneci GOGF 17/30958
. 707/798
Bornhoevd, Palo Alto, CA (US); 2014/0067781 AL* 3/2014 Wolchok GOGF 17/30392
Wolfgang Lehner, Dresden (DE) 207/701
2014/0067850 Al* 3/2014 Schrock GOGF 17/30587
(73) Assignee: SAP AG, Walldorf (DE) 707/769
2014/0172914 Al* 6/2014 Elnikety GOGF 17/30979
(*) Notice: Subject to any disclaimer, the term of this . i 707/774
patent is extended or adjusted under 35 2014/0244687 Al 82014 Shmueli GO6F 1%370/;2(7)
U.S.C. 154(b) by 182 days. 2014/0280307 AL* 92014 Gupta .o, GOGF 17/30657
707/769
(21) Appl. No.: 14/227,065 2014/0310302 Al* 102014 Wuceeeeeeee GOGF 17/30442
707/769
(22) Filed: Mar. 27. 2014 2015/0026158 AL* 1/2015 Jin .oooooccovcines GOGF 17/30979
’ 707/722
3k
(65) Prior Publication Data 2015/0120775 AL® 42015 8hao oo GOGE 1;837()/;‘23
US 2015/0278396 Al Oct. 1, 2015 * cited by examiner
(51) Int.CL Primary Examiner — Cam-Linh Nguyen
GOG6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
(52) US.CL & Fox PL.L.C.
CPC GO6F 17/30958 (2013.01); GOGF 17/30442
(2013.01); GOG6F 17/30657 (2013.01); GO6F (57) ABSTRACT
. . . 17/30979 (2013.01) A system, computer-implemented method, and a computer-
(58) Field of Classification Search readable medium for determining why a query returns a null
USPC P SIIEtes 707/769, 798 set in a database management system. When the database
See application file for complete search history. management system receives a query graph, database man-
. agement system compares the query graph to the data graph.
(56) References Cited Based on the comparison, database management system

U.S. PATENT DOCUMENTS

6,169,986 B1* 1/2001 Bowman GO6F 17/30395
6,529,948 B1* 3/2003 Bowman-Amuah .. GO6F 9/4435
709/217

identifies a discovered component of the query graph and a
missing component of the query graph, wherein the missing
query component indicates a reason for the null set.

20 Claims, 5 Drawing Sheets

Receive a diff-query that evaluates a 402
graph query

Determine a maximum common sub-
graph for the graph query that represents
a discovered query component

| —404

l

Determine a differenca graph between the
maximum common sub-graph and the
graph query that represents a missing

query component

—~406

U.S. Patent

Aug. 2, 2016 Sheet 1 of 5

US 9,405,855 B2

Business Applications 106

Connection and Session Management Module

Autho- 104
rization
Manager 108
124
saL SSCﬁFL),[MDX || WIPE
108a 108b 108¢ 108d
Optimizer and Plan Generator
112
Execution Engine
114
In-Memory Processing Engines 110
Meta-data
Manager Relational Graph Text
126 Engine Engine Engine
116a 116b 116¢

'Transaction
Manager
110

Persistency Layer 118

Logging and Recovery 120

Page Management 122

FIG. 1

US 9,405,855 B2

Sheet 2 of 5

Aug. 2,2016

U.S. Patent

N

g1 ¢ jusuodwon
Alanp Buissiy

¢ '9Old

9}z jusuadwo)
Aenp palanoosi(

A

Lie

Gic

ez ezhjeuy
Arenp-fia

G0z lezhjeuy

A%
19S IINN /
802
lamsuy
1oS ejeq

¥z ydein
Aisnp ya

A

Arenp ydeln

g9l | suibug ydeio

Y02 \
Alenp

ydeuisy

90z udein
Apadoud

z02
Aenp

U.S. Patent Aug. 2, 2016 Sheet 3 of 5 US 9,405,855 B2

[
o

/ 302

Algorithm 1 The MCCS algorithm for a property graph

1. function MCCS_Search(query graph Gg)

2 graphs, tmp

3 for all edge g, in G;do

4; sources; = getSourceVertices(q,)

5: graph = DFS(sources; g, true, graphs;)
6 graphs.addGraph(graph)

7 for all graphs; de

8 if graphs; > tmp then tmp = graphs;

9: return imp
10: /*depth-first search™®/
11: function DFS(sources, edges, isStart, graphs)

12: for all sources;do

13: if /isStart then edge = getNextEdge(edge)

14: if noNextEdge then return graph

15: targets = traverse(edge)

16: filterTargets(targets)

17: for all targets do

18: graphs.addEdge(edge, sources;, targelsy)
19: graph = DFS(targetsq, edge, false, graph)
20: return graph

FIG. 3

U.S. Patent Aug. 2, 2016 Sheet 4 of 5

US 9,405,855 B2

10N
o

Receive a diff-query that evaluates a
graph query

_— 402

4

Determine a maximum common sub-
graph for the graph query that represents
a discovered query component

404

A 4

Determine a difference graph between the
maximum common sub-graph and the
graph query that represents a missing

query component

L_—406

FIG. 4

U.S. Patent Aug. 2, 2016 Sheet 5 of 5 US 9,405,855 B2

Computer System 500

Processor 504

Main Memory 508

User Input/Output | User Input/Output
interface(s) 502 Device(s) 503

\ 4

L1010

Secondary Memory 510
Hard Disk
Communication 512
Infrastructure
506
/— Removable Removable
\r—— Storage Drive [« > Storage Unit
514 518
Interface Removable
520 < > Storage Unit
522
Communication Remote device(s),
k) Interface > network(s),
524 entity(ies) 528

Communication Path 526

FIG. 5

US 9,405,855 B2

1

PROCESSING DIFF-QUERIES ON PROPERTY
GRAPHS

BACKGROUND
Background Art

Data in the form of graphs represents data from multiple
domains. For example, graphs show relationships between
different data objects, as well as relationships between data
objects and properties of these objects. These relationships
may be mapped to vertices and edges in a data graph, such as
a property graph.

A graph database implementing a property graph data
model provides schema-flexible storage and supports com-
plex, expressive queries. Example queries include shortest
path query, reachability query and graph isomorphism query.
However, the flexibility and expressiveness of these queries
may result in an unexpected empty answer even though cor-
responding data exists in the data graph. This may occur when
a query has been overspecified and even if relevant data is in
the database the data might not be found because it does not
exactly match the query constraints. To understand the reason
for an empty answer, query issuers create and resubmit alter-
native queries, which may be a cumbersome and time con-
suming task.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated
herein and form a part of the specification

FIG.1is ablock diagram of an exemplary database system.

FIG. 2 is a block diagram of a system for processing graph
queries and diftf-queries, according to an embodiment.

FIG. 3 is a diagram of exemplary pseudo code that gener-
ates amaximum common sub-graph, according to an embodi-
ment.

FIG. 4 is a flowchart of a method for determining discov-
ered and missing query components, according to an embodi-
ment.

FIG. 5 is an exemplary computing device where the con-
templated embodiments can be implemented.

In the drawings, generally, like reference numbers indicate
identical or functionally similar elements. Additionally, gen-
erally, the left-most digit(s) of a reference number identifies
the drawing in which the reference number first appears.

DETAILED DESCRIPTION

Provided herein are system, method and/or computer pro-
gram product embodiments, and/or combinations and sub-
combinations thereof, for determining discovered and miss-
ing components of a query.

Database Management System

FIG. 1 is a block diagram 100 of an exemplary database
management system 102. Database management system 102
may be a memory-centric data management system that
leverages hardware capabilities, such as vast main memory
space, multi core CPUs and GPU processors, and storage
device division (SDD) storage.

In an embodiment, database management system 102
includes connection and session management module 104.
Connection and session management module 104 creates and
manages sessions and connections for database clients. Data-
base clients may be computing devices under a control of a
user (also referred to as client devices) that access and/or

10

15

20

25

30

35

40

45

50

55

60

65

2

execute business applications 106. Business applications 106
are custom or generic applications that include applications
related to social media, bio-informatics, and business pro-
cessing, to name a few examples.

Once connection and session management module 104
establishes a session, database clients may use database lan-
guages 108, to manipulate data associated with business
applications 106. Example database languages 108 include
structured query language (SQL) 108a, SQL Script 1085 (a
scripting language for describing application specific calcu-
lations inside the database), a MultiDimensional eXpressions
(MDX) 108¢ and WIPE (for data graph processing) 1084, to
give a few non-limiting examples.

In an embodiment, transaction manager 110 ensures that
database management system 102 provides ACID (atomicity,
consistency, isolation, durability) properties. A person skilled
in the art will appreciate that in the embodiments the ACID
properties ensure that the database transactions are processed
reliably and in order. For example, transaction manager 110
coordinates database transactions, controls transactional iso-
lation, and keeps track of running and closed transactions.

Inan embodiment, optimizer and plan generator 112 parses
and optimizes client requests that, for example, may be made
using database languages 108. For example, optimizer and
plan generator 112 may generate an execution plan for
executing the client request in database management system
102. Once generated, optimizer and plan generator 112
passes the execution plan to execution engine 114.

In an embodiment, execution engine 114 invokes an in-
memory processing engine 116a-c to process the execution
plan. Execution engine 114 may invoke a different
in-memory processing engine 116a-c based on the execution
plan type. Example in-memory processing engines 116a-c¢
include a relational engine 116a, a graph engine 1165 and a
text engine 116¢.

In an embodiment, relational engine 1164 processes struc-
tured data. Relational engine 1164 supports both row- and
column-oriented physical representations of relational tables.
In an embodiment, column-oriented data is stored in a highly
compressed format in order to improve the efficiency of
memory resource usage and to speed up the data transfer from
disk storage to cache memory or from cache memory to CPU.

In an embodiment, graph engine 1165 and text engine 116¢
support efficient representation and processing of unstruc-
tured data. For example, graph engine 1165 processes data
graphs. To enable efficient graph access and processing,
graph engine 1165 provides a set of base operations that act
upon a graph. In an embodiment, these operations may be
invoked using WIPE 1084, a graph query manipulation lan-
guage. In an embodiment, graph engine 1165 supports
resource planning applications having large numbers of indi-
vidual resources and complex mash-up interdependencies.
Graph engine 11654 also supports efficient execution of trans-
formation processes (such as data cleansing in data-ware-
house scenarios) and enables the ad-hoc integration of data
from different sources.

In an embodiment, text engine 116¢ provides text indexing
and search capabilities. Example text indexing and search
capabilities include search for words and phrases, fuzzy
search (which tolerates typing errors), and linguistic search
(which finds variations of words based on linguistic rules). In
addition, text engine 116¢ ranks search results and supports
searching across multiple tables and views.

In an embodiment, persistency layer 118 provides durabil-
ity and atomicity to transactions. Persistency layer 118
includes a logging and recovery module 120 and a page
management module 122. Logging and recovery module 120

US 9,405,855 B2

3

logs data, changes in data, and transaction requests to a
memory storage disk. Those transactions and data changes
may be performed by in-memory processing engines 116a-c,
as well as requests issued by multiple client devices.

Page management module 122 provides an interface for
writing and reading data from memory cache and disk storage
for processing by in-memory processing engines 116a-c.

Persistency layer 118 uses logging and recovery module
120 and page management module 122 to ensure that data-
base management system 102 is restored to the most recent
committed state after a restart or system failure. Persistency
layer 118 also ensures that transactions are either completely
executed or completely undone. To achieve this efficiently,
persistency layer 118 uses techniques such as combining
write-ahead logs, shadow paging, and save-points that are
known to a person of skilled in the relevant art.

In an embodiment, database management system 102
includes an authorization manager 124. Authorization man-
ager 124 determines whether a user has the required privi-
leges to execute the requested operations. A privilege grants a
right to perform a specified operation (such as create, update,
select, or execute). The database management system 102
also supports analytical privileges that represent filters or
hierarchy drill-down limitations for analytical queries, as
well as control access to values with a certain combination of
dimension attributes.

In an embodiment, metadata manager 126 manages meta-
data in database management system 102. Example metadata
includes table definitions, views, indexes, and the definition
of SQL script functions.

As discussed above, database management system 102
includes graph engine 1165. Graph engine 1165 processes
data in the form of graphs. To process data graphs, graph
engine 1165 includes an internal graph application program
interface (API) that provides a set of core operators. The core
operators are the building blocks for graph data query and
manipulation language, such as WIPE. Also, the core opera-
tors may be leveraged to implement higher level graph pro-
cessing algorithms, such as shortest path, nearest neighbor,
minimum spanning tree, maximum flow, or transitive closure
calculations, to name a few examples.

In database management system 102, a data graph may be
represented as a property graph. A property graph supports
diverse data with different degrees of structure in a form of a
graph. A property graph is a directed graph where vertices are
entities and edges are relationships between the vertices.
Each edges and vertex in a property graph may be described
using one or more attributes and values associated with the
attributes. An example attribute may be a name-value pair. In
one embodiment, a vertex attribute may include a unique
identifier, and a pair attribute may represent a semantic type
of a connection. The vertices and edges may also be repre-
sented by an arbitrary number of attributes, which can differ
between vertices or edges of the same semantic type. Advan-
tageously, a data graph represented as a property graph does
not require a predefined and rigid database schema common
to relational database management systems.

In graph database, a query may be used to seek a pattern in
a data graph. FIG. 2 is a block diagram 200 of a system for
processing graph queries and diff-queries, according to an
embodiment. In block diagram 200, database management
system 102 receives query 202. Once database management
system 102 receives, database management system 102 trans-
forms query 202 into graph query 204. Graph engine 1165
then generates an answer for graph query 204 using graph
query analyzer 205. For example, graph query analyzer 205
searches property graph 206. In an embodiment, property

10

15

20

25

30

35

40

45

50

55

60

65

4

graph 206 is a representation of a data graph in database
management system 102. The search generates an answer 208
that includes data responsive to graph query 204. In one
embodiment, answer 208 may include data set 210. In another
embodiment, answer 208 may include a null set, such as a null
set 212. In some embodiments, graph query analyzer 205 may
return null set 212 when graph data for query 202 exists in
property graph 206. Once graph query analyzer 205 generates
answer 208, database management system 102 returns
answer 108 to an issuer of query 202.

In an embodiment, to determine a reason for null set 212,
graph engine 1165 communicates with a diff-query analyzer
213. In an embodiment, diff-query analyzer 213 may be a
component within or outside of graph engine 1165. Dift-
query analyzer 213 processes diff-query 214 of query 202.
Diff-query 214 shows components of query 202 that graph
query analyzer 205 discovered in property graph 206 and
components of query 202 that are missing from property
graph 206. For example, when diff-query analyzer 213 pro-
cesses diff-queries 214, diff-query analyzer 213 returns a
discovered query component 216 and a missing query com-
ponent 218.

In an embodiment, to determine discovered query compo-
nent 216 and missing query component 218, diff-query ana-
lyzer 213 determines maximum common sub-graphs
between property graph 206 and graph query 204. Then diff-
query analyzer 213 identifies a maximum common sub-graph
215 from maximum common sub-graphs. Maximum com-
mon sub-graph 215 represents discovered query component
216.

In an embodiment, diff-query analyzer 213 then calculates
a difference graph 217. Difference graph 217 represents a
difference between maximum common sub-graph 215 and
query graph 204. Difference graph 217 represents missing
query component 218.

In an embodiment, mathematically, property graph 206
and sub-graphs within property graph 204 may be repre-
sented using vertices and edges. For example, property graph
206 may be defined as a directed graph G=(V, E, u, {, g) over
attribute space A=A JUA,, where:

V and E are finite sets of vertices V and edges E;

u: E—V? is a mapping between vertices V and edges E;

f(V) and g(E) are attribute functions for vertices and edges;
and

A, and A are the attribute spaces for attribute functions
f(V) and g(E), respectively.

A connected sub-graph of the directed graph G may be
defined as G'=(V', B, u', ', g) if V'V, B'c B, u'l,, f'l; and
g'l,.

%n an embodiment, a data graph G, that is represented as
property graph 206 and a query graph G, (query graph 204)
have a common connected sub-graph G',=(V', E',, u',, T,
g',), if G',;is a common connected sub-graph of graph G, and
G, In an embodiment, there may be multiple common con-
nected sub-graphs G', in data graph G, for a query graph G,,.

In an embodiment, one or more of common connected
sub-graphs G', may be a maximum common connected sub-
graph G',; (maximum common sub-graph 215). A maximum
connected sub-graph G',;,,,,,. of data graph G, and query graph
G, may existwhenS,,, thatin G,and G, issuch thatS<S,, ,.:
V=V, UE=<E . The maximum connected sub-graph
G May be used to determine discovered query compo-
nent 216 and missing query component 218 in diff-query 214.

In an embodiment, maximum common connected sub-
graph G',,,. of query graph G, and data graph G, may be
determined using one or more sub-graph algorithms. In an
embodiment, a graph may be stored in an adjacency matrix or

US 9,405,855 B2

5

an adjacency list on which sub-graphs algorithms operate.
For example, matrix M may consist of nxn elements, where n
represents a number of vertices in the graph. Further, each
element in matrix M having a value of 1 represents an edge
between vertex, and verte, When property graph 206 or
another graph is stored as a matrix M, maximum connected
sub-graph 215 may be calculated using linear algebra opera-
tions. Further, when the graph represented using matrix M is
aproperty graph, then the attributes of the property graph may
be stored in a separate data structure and can be used to
pre-filter matrix M prior to determining the maximum con-
nected sub-graph 215. A person skilled in the art will appre-
ciate that pre-filtering may reduce a number of mathematical
operations required to determine maximum connected sub-
graph 215 and hence increase performance of an overall sys-
tem.

In an embodiment, Ullmann and McGregor algorithms
may be applied to matrix M and generate a maximum con-
nected sub-graph G',,, ... Ullmann and McGregor algorithms
are known to a person of ordinary skill in the art. For example,
Ullmann algorithm is a tree-search enumeration algorithm
which eliminates successor vertices in property graphs. Also,
Ullmann algorithm may exclude elements in matrix M, which
may reduce the size of a search space. In an embodiment,
diff-query analyzer 213 may use Ullmann algorithm when
diff-query analyzer 213 requires an exact match between data
graph G, and query graph G,,.

In an embodiment, McGregor algorithm is a backtracking
algorithm that may be used to generate a maximum connected
sub-graph G',, . (maximum connected sub-graph 215).
McGregor algorithm may also be used with pruning tech-
niques and pre-filtering options that further reduce the search
space in property graph 206 required to generate the maxi-
mum connected sub-graph G';,, ...

In an embodiment, diff-query analyzer 213 may also use a
Durand-Pasari algorithm or a Balay Yu algorithm. Each of
these algorithms is well known and may be efficient in deter-
mining maximum connected sub-graph G',;,,,,,,. in data graphs
that are sparse data graphs or dense data graphs, and are also
known to a person of ordinary skill in the art.

Once diff-query analyzer 213 determines maximum con-
nected sub-graph G',,,, .., diff-query analyzer 213 uses maxi-
mum connected sub-graph G',;,,,,,.. to determine missing query
component 218. To determine missing query component 218,
diff-query analyzer 213 determines a difference graph 217
that represents a difference between graph query 204 and
maximum connected sub-graph G',,, .. For example, differ-
ence graph 217 includes query vertices and edges that were
not discovered when diff-query analyzer 213 was processing
query graph 204 and generating maximum connected sub-
graph G',,,..., as well as the instances of query vertices adja-
cent to a maximum common connected sub-graph G',,, .-

In an embodiment, difference graph 217 may be defined as
agraphG' =(V',B' v T . g . V' (adj),C), where V' CV ,
B, cEB,u |1l andg |, V' (adj)areadjacent vertices,
and C is a set of non-adjacent discovered vertices that dift-
query analyzer 213 can exclude from further search.

In an embodiment, when graph query analyzer 205 pro-
cesses query 202 and returns null set 212, diff-query analyzer
213 may receive diff-query 214 for query 202. Diff-query
analyzer 213 then processes diff-query 214 which generates
discovered query component 216 and missing query compo-
nent 218 for query 202.

FIG. 3 is a diagram of exemplary pseudo code 300 that
generates a maximum common sub-graph, according to an
embodiment. Pseudo code 300 operates on graphs stored in a
graph database, such as a graph database discussed in FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

6

In an embodiment, graph database may be a column based
database that describes vertices and edges in respective set of
tables. For example, vertices may be described by a set of
columns in terms of attributes associated with the vertices,
while edges may be stored in adjacency lists in a table. Fur-
ther, each edge may have multiple attributes which are stored
with the description of the edge. In an embodiment, vertices
and edges may be represented using unique identifies.

In an embodiment, pseudo code 300 uses McGregor algo-
rithm that traverses property graphs 206. McGregor algo-
rithm in FIG. 3 is labeled as an algorithm 302. Algorithm 302
begins at line 1 and completes at line 20. Algorithm 302
generates a maximum common sub-graph as it processes
tables in the-column based database. An input to algorithm
302 is query graph 204. An output of algorithm 302 is maxi-
mum common sub-graph 215.

Once algorithm 302 receives query graph 204 as input,
algorithm 302 identifies the edges in query graph 204. Algo-
rithm 302 then uses the identified edges in query graph 204 to
identify start vertices that generate the identified edges at line
4.

Atline 5, algorithm 302 invokes a DFS function that begins
on line 11. The DFS function receives the start vertices, an
edge that is associated with the start vertices and generates a
maximum common sub-graph for the start vertices. Once the
DFS function generates maximum common sub-graph, algo-
rithm 302 adds the generated maximum common sub-graph
to a list of common sub-graphs at line 6. Algorithm 302 then
repeats the process for a different edge in query graph 204.

Once algorithm 302 completes generating maximum com-
mon sub-graphs (for example, when algorithm 302 traverses
all edges in query graph 204), algorithm 302 traverses the list
of common sub-graphs at lines 7-9 and identifies maximum
common sub-graph 215 from the list. Maximum common
sub-graph 215 is a discovered query component 216.

In an embodiment, after algorithm 302 generates maxi-
mum common sub-graph 215, diff-query analyzer 213 deter-
mines missing query component 218. To determine missing
query component 218, diff-query analyzer 213 identifies the
discovered and undiscovered vertices and edges. Once dift-
query analyzer 213 identifies the undiscovered vertices and
edges, diff-query analyzer 213 completes the undiscovered
vertices and edges with attributes or vertices conditions and
generates missing query component 218.

In an embodiment, data generated by algorithm 302 may
also be used to determine the undiscovered vertices and
edges. For example, as algorithm 302 executes, diff-query
analyzer 213 maintains a mapping between data graph edges
and query graph edges, and data graph vertices and query
graph vertices in temporary tables. From temporary tables,
diff-query analyzer 213 generates difference graph 217. Dif-
ference graph 217 consists of query graph 204 vertices and
edges that are not represented in the temporary tables.

In an embodiment, diff-query analyzer 213 then completes
difference graph 217 to generate missing query component
218. For example, one or more edges in difference graph 217
may have a start vertex, but not an end vertex, or vice versa.
Here, diff-query analyzer 213 determines the missing start or
end vertex and includes the missing start or end vertex into
difference graph 217. To determine the missing start or end
vertex, diff-query analyzer 213 analyzes the temporary tables
that include the discovered vertices and query description and
assigns vertices and edges to difference graph 215 according
to predefined rules. For example, when query edge is not
included in the temporary table, but the vertex that the query
edge points to is included in the temporary table, than dift-
query analyzer 213 also includes the vertex into difference

US 9,405,855 B2

7

graph 215. In another example, if a query vertex and all of
query edges associated with the vertex (both edges that begin
and end at the vertex) are included in the temporary tables,
then diff-query analyzer 213 excludes the vertex from differ-
ence graph 215. Once diff-query analyzer 213 completes the
above analysis, difference graph 215 becomes missing query
component 218.

In an embodiment, diff-query analyzer 213 may perform
optimization techniques to optimize algorithm 302. When
diff-query analyzer 213 initiates algorithm 302 from each
query vertex, diff-query analyzer 213 initiates algorithm 302
multiple times. Each time, algorithm 302 generates a maxi-
mum connected sub-graph that diff-query analyzer 213 adds
to a maximum connected sub-graph list. Then diff-query
analyzer 213 determines maximum common sub-graph 215
from the maximum common sub-graph list.

To reduce the number of times algorithm 302 may be
executed, diff-query analyzer 213 may choose the order of
edges in query graph 204 from which to obtain the start
vertices. For example, diff-query analyzer 213 may choose an
order of edges according to a number of previous or next
edges. This way, a vertex having a maximum number of
incoming and outgoing edges may be selected as a starting
point for algorithm 302. For example, for a vertex having a
higher number of edges, more edges require processing, and
as such, there is a greater chance for algorithm 302 to discover
the maximum common sub-graph 215 earlier.

To reduce the number of times algorithm 302 may be
executed, diff-query analyzer 213 may also determine cardi-
nality for vertices and edges in query graph 204. Cardinality
is a quantified relationship between vertices and edges, and/or
between attributes associated with vertices and edges. Diff-
query analyzer 213 then sorts the cardinality of the vertices
and edges in ascending order, and chooses the edge with the
lowest cardinality as the start edge in line 4 of algorithm 302.
In an embodiment, diff-query analyzer 213 may also choose
direction ofthe search based on the cardinality ofa source and
target vertices. In an embodiment, where algorithm 302
restarts the maximum connected sub-graph search at line 5,
diff-query analyzer 213 may use cardinality of edges to deter-
mine whether to initiate a maximum connected sub-graph
search. For example diff-query analyzer 213 may discard an
edge from the search where an edge has a cardinality of zero.

In an embodiment, diff-query analyzer 213 may also use
cardinality to determine when to terminate algorithm 302. In
the embodiment in FIG. 3, algorithm 302 terminates when all
edges of query graph 204 have been traversed, no additional
edges have been found and the backtracking procedure in the
DFS function completes. However, diff-query analyzer 213
may also use the cardinality to determine a threshold that
terminates the search prior to the above conditions being met.
For example, if query graph 204 has N edges, then for M
edges the cardinality(M)>0, where M E N. Here the maxi-
mum common sub-graph 215 can have at most M edges. After
algorithm 302 identifies a maximum common sub-graph hav-
ing M edges, diff-query analyzer 213 terminates algorithm
302.

In one example, suppose query graph 204 has four vertices
and three edges, where the predicate cardinality of edge 1=5,
cardinality of edge 2=2 and cardinality of edge 3=0. Here,
maximum common sub-graph 215 may have at most two
edges. As such, diff-query analyzer 213 may terminate algo-
rithm 302 when algorithm 302 identifies maximum common
sub-graph with two edges.

FIG. 4 is a flowchart of a method 400 for determining
discovered and missing query components, according to an
embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

8

At operation 402, a diff-query that evaluates a graph query
is received. For example, diff-query analyzer 213 receives
graph query 204, that, when it was previously executed gen-
erated null set 212. To determine the reason for the null set
212, diff-query 214 determines discovered query component
216 and missing query component 218 for query 204.

At operation 404, a maximum common sub-graph is gen-
erated. For example, diff-query analyzer 213 compares graph
query 204 that was received in operation 406 to a data graph,
that may be stored as a property graph 206. During the com-
parison, using algorithm 302 or another algorithm, dift-query
analyzer 213 determines maximum common sub-graph 215
between graph query 204 and property graph 206. In an
embodiment, maximum common sub-graph 215 may be dis-
covered query component 216.

At operation 406, a missing query component is generated.
For example, diff-query analyzer 213 determines difference
graph 217 between query graph 204 and maximum common
sub-graph 215 generated at operation 404. Once generated,
difference graph 217 may be modified to include additional
start and end vertices whose incoming or outgoing edges are
already included in difference graph 217. In an embodiment,
difference graph 217 may be the missing query component
218.

Various embodiments can be implemented, for example,
using one or more well-known computer systems, such as
computer system 500 shown in FIG. 5. Computer system 500
can be any well-known computer capable of performing the
functions described herein, such as computers available from
International Business Machines, Apple, Sun, HP, Dell, Sony,
Toshiba, etc.

Computer system 500 includes one or more processors
(also called central processing units, or CPUs), such as a
processor 504. Processor 504 is connected to a communica-
tion infrastructure or bus 506.

One or more processors 504 may each be a graphics pro-
cessing unit (GPU). In an embodiment, a GPU is a processor
that is a specialized electronic circuit designed to rapidly
process mathematically intensive applications on electronic
devices. The GPU may have a highly parallel structure that is
efficient for parallel processing of large blocks of data, such
as mathematically intensive data common to computer graph-
ics applications, images and videos.

Computer system 500 also includes user input/output
device(s) 503, such as monitors, keyboards, pointing devices,
etc., which communicate with communication infrastructure
506 through user input/output interface(s) 502.

Computer system 500 also includes a main or primary
memory 508, such as random access memory (RAM). Main
memory 508 may include one or more levels of cache. Main
memory 508 has stored therein control logic (i.e., computer
software) and/or data.

Computer system 500 may also include one or more sec-
ondary storage devices or memory 510. Secondary memory
510 may include, for example, a hard disk drive 512 and/or a
removable storage device or drive 514. Removable storage
drive 514 may be a floppy disk drive, a magnetic tape drive, a
compact disk drive, an optical storage device, tape backup
device, and/or any other storage device/drive.

Removable storage drive 514 may interact with a remov-
able storage unit 518. Removable storage unit 518 includes a
computer usable or readable storage device having stored
thereon computer software (control logic) and/or data.
Removable storage unit 518 may be a floppy disk, magnetic
tape, compact disk, DVD, optical storage disk, and/any other

US 9,405,855 B2

9

computer data storage device. Removable storage drive 514
reads from and/or writes to removable storage unit 518 in a
well-known manner.

According to an exemplary embodiment, secondary
memory 510 may include other means, instrumentalities or
other approaches for allowing computer programs and/or
other instructions and/or data to be accessed by computer
system 500. Such means, instrumentalities or other
approaches may include, for example, a removable storage
unit 522 and an interface 520. Examples of the removable
storage unit 522 and the interface 520 may include a program
cartridge and cartridge interface (such as that found in video
game devices), a removable memory chip (such as an
EPROM or PROM) and associated socket, a memory stick
and USB port, a memory card and associated memory card
slot, and/or any other removable storage unit and associated
interface.

Computer system 500 may further include a communica-
tion or network interface 524. Communication interface 524
enables computer system 500 to communicate and interact
with any combination of remote devices, remote networks,
remote entities, etc. (individually and collectively referenced
by reference number 528). For example, communication
interface 524 may allow computer system 500 to communi-
cate with remote devices 528 over communication path 526,
which may be wired and/or wireless, and which may include
any combination of LANs, WANSs, the Internet, etc. Control
logic and/or data may be transmitted to and from computer
system 500 via communication path 526.

It is to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections (if any), is
intended to be used to interpret the claims. The Summary and
Abstract sections (if any) may set forth one or more, but not
all, contemplated exemplary embodiments, and thus, are not
intended to limit the disclosure or the appended claims in any
way.

While the disclosure has been described herein with refer-
ence to exemplary embodiments for exemplary fields and
applications, it should be understood that the disclosure is not
limited thereto. Other embodiments and modifications
thereto are possible, and are within the scope and spirit of the
disclosure. For example, and without limiting the generality
of this paragraph, embodiments are not limited to the soft-
ware, hardware, firmware, and/or entities illustrated in the
figures and/or described herein. Further, embodiments
(whether or not explicitly described herein) have significant
utility to fields and applications beyond the examples
described herein.

Embodiments have been described herein with the aid of
functional building blocks illustrating the implementation of
specified functions and relationships thereof. The boundaries
of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined as long as the specified func-
tions and relationships (or equivalents thereof) are appropri-
ately performed. Also, alternative embodiments may perform
functional blocks, steps, operations, methods, etc. using
orderings different than those described herein.

References herein to “one embodiment,” “an embodi-
ment,” “an example embodiment,” or similar phrases, indi-
cate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may not necessarily include the particular feature, structure,
or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it would be within the knowledge of

10

15

20

25

30

40

45

10

persons skilled in the relevant art(s) to incorporate such fea-
ture, structure, or characteristic into other embodiments
whether or not explicitly mentioned or described herein.

The breadth and scope should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:
1. A computer-implemented method comprising:
accessing a data graph stored in memory of a database
management system, wherein the data graph comprises
a first plurality of vertices;

receiving a query graph, wherein the query graph com-
prises a second plurality of vertices, and wherein the
query graph causes the database management system to
retrieve data from the data graph as specified in the query
graph;

executing in the database management system, the query

graph against the data graph stored in the memory,
wherein the execution generates an empty data set indi-
cating data specified in the query graph does not exist in
the data graph when the data specified in the query graph
exists in the data graph; and

based on the empty data set, generating a discovered com-

ponent and a missing component of the query graph,
wherein the discovered component includes a first ver-
tex from the first and second plurality of vertices, and the
missing component includes a second vertex from the
second plurality of vertices that causes the database
management system to generate the empty data set when
executing the query graph.

2. The computer-implemented method of claim 1, further
comprising:

receiving a query specifying the data in the data graph; and

converting the query into the query graph.

3. The computer-implemented method of claim 1, wherein
the generating further comprises:

generating a maximum common sub-graph between the

query graph and the data graph, wherein the maximum
common sub-graph includes a maximum number of ver-
tices that are common to the first and second plurality of
vertices and wherein the maximum common sub-graph
is the discovered component of the query graph.

4. The computer-implemented method of claim 3, wherein
the generating further comprises:

generating a difference graph between the maximum com-

mon sub-graph and the query graph, wherein the differ-
ence graph indicates the missing component of the query
graph.

5. The computer-implemented method of claim 4, further
comprising:

adding one of the vertices in the maximum common sub-

graph to the difference graph, wherein the one of the
vertices is associated with an edge that is included in the
difference graph.

6. The computer-implemented method of claim 3, wherein
generating the maximum common sub-graph further com-
prises:

generating a list of maximum common sub-graphs,

wherein the list includes a first maximum common sub-
graph generated using the first vertex of the second
plurality of vertices in the query graph and a second
maximum common sub-graph generated using a third
vertex of the second plurality of vertices; and

selecting the maximum common sub-graph from the list.

US 9,405,855 B2

11

7. The computer-implemented method of claim 1, wherein
the data graph is a property graph and the database manage-
ment system includes a column-based graph database.

8. The computer-implemented method of claim 7, wherein
the property graph is represented as a set of tables including a
first plurality of vertices and a plurality of edges in the prop-
erty graph.

9. A system, comprising:

a memory configured to store a data graph of a database

management system, wherein the data graph comprises

a first plurality of vertices; and

one or more processors coupled to the memory and oper-

able to:

receive a query graph, wherein the query graph com-
prises a second plurality of vertices, and wherein the
query graph causes the one or more processors of the
database management system to retrieve data from the
data graph as specified in the query graph;

execute the query graph against the data graph stored in
the memory, wherein the execution generates an
empty data set indicating data specified in the query
graph does not exist in the data graph when the data
specified in the query graph exists in the data graph;
and

based on the empty data set, generating a discovered
component and a missing component of the query
graph, wherein the discovered component includes a
first vertex from the first and second plurality of ver-
tices, and the missing component includes a second
vertex from the second plurality of vertices that
causes the one or more processors to generate the
empty data set when executing the query graph.

10. The system of claim 9, wherein the one or more pro-
cessors are further configured to:

receive a query specifying the data in the data graph; and

convert the query into the query graph.

11. The system of claim 9, wherein to generate the discov-
ered component the one or more processors are further con-
figured to:

generate a maximum common sub-graph between the

query graph and the data graph, wherein the maximum
common sub-graph includes a maximum number of ver-
tices that are common to the first and second plurality of
vertices and wherein the maximum common sub-graph
is the discovered component of the query graph.

12. The system of claim 11, wherein to generate the miss-
ing component the one or more processors are further con-
figured to:

generate a difference graph between the maximum com-

mon sub-graph and the query graph, wherein the differ-
ence graph indicates the missing component of the query
graph.

13. The system of claim 12, wherein the one or more
processors are further configured to:

add one of the vertices from the maximum common sub-

graph to the difference graph, wherein the one of the
vertices is associated with an edge that is included in the
difference graph.

14. The system of claim 11, wherein to generate the maxi-
mum common sub-graph the one or more processors are
further configured to:

generate a list of maximum common sub-graphs, wherein

the list includes a first maximum common sub-graph

10

15

20

25

30

35

40

45

50

55

60

12

generated using the first vertex of the second plurality of
vertices in the query graph and a second maximum com-
mon sub-graph generated using a third vertex of the
second plurality of vertices in; and

select the maximum common sub-graph from the list.

15. The system of claim 9, wherein the data graph is a
property graph and the database management system
includes a column-based graph database.

16. The system of claim 15, wherein the property graph is
represented as a set of tables including a first plurality of
vertices and a plurality of edges in the property graph.

17. A computer-readable medium having instructions
stored thereon, that when executed by a computing device,
causes the computing device to perform operations, the
operations comprising:
accessing a data graph stored in memory of a database
management system, wherein the data graph comprises
a first plurality of vertices;

receiving a query graph, wherein the query graph com-
prises a second plurality of vertices, and wherein the
query graph causes the database management system to
retrieve data from the data graph as specified in the query
graph;

executing in the database management system, the query

graph against the data graph stored in the memory,
wherein the execution generates an empty data set the
query graph does not exist in the data graph when the
data specified in the query graph exists in the data graph;
and

based on the empty data set, generating a discovered com-
ponent and a missing component of the query graph,
wherein the discovered component includes a first ver-
tex from the first and second plurality of vertices and the
missing component includes a second vertex from the
second plurality of vertices that causes the database
management system to generate the empty data set when
executing the query graph.

18. The computer-readable medium of claim 17, further
comprising:

receiving a query specifying the data in the data graph; and

converting the query into the query graph.

19. The computer-readable medium of claim 17, wherein
to generate the discovered component the computing device
further performs operations, the operations comprising:

generating a maximum common sub-graph between the
query graph and the data graph, wherein the maximum
common sub-graph includes a maximum number of ver-
tices that are common to the first and second plurality of
vertices and wherein the maximum common sub-graph
is the discovered component of the query graph.

20. The computer-readable medium of claim 17, wherein
to generate the missing component the one or more proces-
sors are further configured to:

generate a difference graph between the maximum com-
mon sub-graph and the query graph, wherein the differ-
ence graph indicates the missing component of the query

graph.

